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LEITER TO THE EDITOR 

Explicit wavefunctions for shape-invariant potentials by 
operator techniques 

J W Dabrowska, Avinash Kharet and Uday P Sukhatme 
Department of Physics, University of Illinois at Chicago, Chicago, IL 60680, USA 

Received 17 November 1987 

Abstract. We obtain explicit expressions for the wavefunctions of all the known shape- 
invariant potentials by using the recently proposed operator method. 

Recently, the familiar harmonic oscillator raising and lowering operator technique has 
been generalised to other potentials of physical interest (Gendenshtein 1983, Dutt e? 
a1 1986a, b). The generalisation, which in many respects is equivalent to Schrodinger’s 
factorisation method (Schrodinger 1940, 1941, Infeld and Hull 1951), is based on two 
main concepts-supersymmetry and shape-invariant potentials. For quantum 
mechanical purposes, the main implication of supersymmetry is simply stated. Given 
any potential V-(x), supersymmetry allows one to construct a partner potential V+(x) 
with the same energy eigenvalues (except for the ground state) (Witten 1981, Cooper 
and Freedman 1983). Furthermore, if V-(x) and V+(x) have similar shapes, they are 
said to be ‘shape invariant’. The concept was introduced five years ago by Gendenshtein 
(1983) who, in the same paper, calculated the energy eigenvalues of such potentials 
and pointed out that many of the solvable potentials (such as Coulomb, harmonic 
oscillator, Morse, Eckart, Poschl-Teller, etc) are shape invariant (see Cooper e? a1 
(1987) for a detailed discussion regarding the connection between shape invariance 
and solvable potentials). This work was subsequently extended (Dutt e? a1 1986a, b) 
to obtain a formal operator expression for the bound-state wavefunctions in terms of 
the ground state in a manner analogous to the harmonic oscillator operator method. 

Although the operator formalism provides an elegant way of writing the eigenfunc- 
tions, it is often desirable to have explicit expressions for them. The purpose of this 
letter is to obtain explicit wavefunctions for all known shape-invariant potentials by 
using the operator method. 

In supersymmetric quantum mechanics, the supersymmetric partner potentials 
V,(x) are given by ( h  = 2m = 1) 

V*(x) = W’(x) f W’(X) W‘(x) = d Wldx (1) 

where W(x) is the superpotential. The Hamiltonians corresponding to these potentials 
can be written in a factorised form in terms of the operators A and A+:  

d d 
dx dx (2) A=-+ W(X). H- = A + A  H+ = AA+ A’= --+ W(X) 
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It may be noted here that W ( x )  is simply related to the ground-state eigenfunction +, 
of H - :  

Now, if +!,-) and $!,+I denote the eigenfunctions of the Hamiltonians H- and H ,  
respectively with eigenvalues E:--) and E',+', then it is well known that (see, for example, 
Witten 1981) 

(4) E'," = E ( - )  

+!,+'oc A$!,?, CC A++!,+) n = 0 ,  1, 2 , .  . . ( 5 )  

n + l  

i.e. the operator A ( A + )  not only converts an eigenfunction of H- ( H , )  into an 
eigenfunction of H+ ( H - )  with the same energy, but it also destroys (creates) a node. 

Let us now explain precisely what one means by shape-invariant potentials. If the 
pair of supersymmetric partner potentials V , ( x )  defined by (1) are similar in shape 
and differ only in the parameters which appear in them, then they are said to be shape 
invariant. More specifically, if V _ ( x ;  ao) is any potential, its supersymmetric partner 
V + ( x ;  a,) must satisfy the requirement (Gendenshtein 1983) 

V + ( x ;  a,) = V - ( x ;  a,)+ R ( a l )  (6) 

where a, is a set of parameters, a, is a function of a, ( a ,  = f ( a o ) ,  say) and the remainder 
R ( a l )  is independent of x. Using these ideas, the eigenstates of shape-invariant 
potentials can easily be obtained. In particular, one can show that the energy spectrum 
of H- is given by (Gendenshtein 1983) 

while its unnormalised energy eigenfunctions are given by (Dutt et a f  1986a, b) 

+!,-)(x,  U,) = A+(x,  a , ) A f ( x ,  U , ) .  . . A + ( x ,  u ~ - ~ ) I / / $ - ) ( x ,  U , )  (8) 

which is clearly a generalisation of the operator method of constructing the energy 
eigenfunctions for the harmonic oscillator potential problem. 

Although (8) is an elegant formal expression, one often wants to see the explicit 
coordinate dependence of the bound-state wavefunctions. In order to do that, it is 
necessary to find the effect of repeated operations of A+ (with different parameters 
a,, a , ,  etc) on the ground-state wavefunction 4" and then recognise the result in terms 
of known functions. Instead of this lengthy procedure, it is far simpler to use the result 

(9) 

In (9) and all subsequent discussion, we only consider wavefunctions of V - ( x ) ,  so the 
superscript (-) has been suppressed for simplicity. We now rewrite (9) in a form so 
as to recognise recursion relations for known functions. To illustrate this procedure 
we first obtain explicit expressions for +,,(x, a,) for two potentials. 

(1) Simple harmonic oscillator potential: V - ( x ;  a,) =&J'(x - 2 b / w ) ' - ; w .  For this 
case 

$ n b ;  ao) = A+(x;  ao)+"-l(x; a, ) .  

W ( X ;  0 ) = ~ - 2 b / w  +o(x ;  w )  = exp( -$+fx). 
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Also the parameter a, = w and all the shape-invariant partner potentials have the same 
parameter, i.e. ak = w (k = 0, 1 ,2 , .  . .). Hence (9) yields 

(11) h ( Y ;  0) = (-d/dY +fwY)+,-l(Y; w )  

where y = x - 2b/w. On defining 

h ( Y ;  = $o(Y; o)Rn(y; 

one finds that R,(y; w )  satisfies 

6 R,(y; U) =2yRn~.i(y; w)-(dldy)R,-i(y, U). (13) 

On comparing with the recursion relation (Al)  for the Hermite polynomials we see 
that R, (y; w )  is proportional to H,(y). Hence the unnormalised wavefunctions for 
the one-dimensional harmonic oscillator problem are 

h ( Y ;  w )  a exP(-Y2/2)K(Y). (14) 
It may be added here that this example has been discussed in many textbooks (see, 
for example, Bohm 1979). We have still decided to give it so that it becomes easier 
to appreciate the application of (9) to other shape-invariant potentials. We now discuss 
a second example. 

V-(X) = - ( A + B ) ' + A ( A - a )  sec' ax+ B ( B - a )  cosec' ax (Os ax< v/2 ;  A, B >  0). 

Here 

W (  x)  = A tan a x  - B cot ax (15) 
This potential depends on two parameters {ao} = (A ,  B )  and the first partner potential 
has parameters {a,}= ( A + a ,  B + a ) .  Hence in this case (9) takes the form 

(16) 

(17) 

(18) 

(ii) Poschl-Teller potential: 

+,,(x) = (sin ~ X ) ~ ' ~ ( C O S  

+,(x; {a,})=(-d/dx+A tan a x - B  cot ax)J/,-,(x; {a,}). 

y = 1-2 sin' a x  

As in the previous example we define a new variable 

and factor out the ground-state wavefunction 

h ( Y ,  {ao}) = rLo(Y, {ao))Rn(y, {sol). 
Substituting into (16) and using (15) we then obtain 

+ [e - (e+ I).] R, -, (y ; A + a, B + a ) .  

On comparison with the recursion relation ( A 3 b )  we see that R,(y; A, B )  is 
proportional to the Jacobi polynomial PF')(y) with 

a = B / a - - f  p = A / a  -4. (20) 

( Y ) .  (21) 

Thus, the unnormalised wavefunctions for this potential are 
~ l , ( ~ ;  A, ~ ) q l  -y)B/2a(l+y)A/2" (Bla-{.A/a-{)  pn 





Letter to the Editor L199 

The procedure outlined above has been applied to all known shape-invariant 
potentials and the final results are summarised in table 1. In this table we have given 
the superpotential W ( x ) ,  potential V - ( x ) ,  values of the parameters {ao}, { ul}, bound- 
state energy E,, energy eigenfunctions +,(y) and the variable y, as well as the recursion 
relation used. 

Special mention may be made of the potential for which W ( x ) =  
A tanh a x  + B sech ax. As far as we are aware energy eigenfunctions have not been 
explicitly worked out in the literature for this potential. Gendenshtein (1983) obtained 
its energy eigenvalues by using shape invariance. From the table it would appear that 
the energy eigenfunctions for this potential are complex. However, this is not so. We 
have explicitly computed the first few eigenfunctions and have checked that they are 
all real and orthonormal. In particular, the first three unnormalised energy eigenfunc- 
tions are (y = sinh ax ,  A = sa, B = Aa): 

(22) 

(23) 

(24) 

2 - s /2  + o ( ~ ,  s) = (1 + Y  1 
h(Y, s) = +O(Y, s)[2A + (2s - 1)Yl 

+2(~ ,  s ) =  +o(Y, S ) { [ ( ~ S - ~ ) Y  +21\I[(2s-3)y+22AI-(2s-3)(l+y2)}. 

exp[-A tan-’ YI  

This work was supported in part by the US Department of Energy. 

Appendix 

The following recursion relations for various orthogonal polynomials have been used 
in deriving the wavefunctions (Fl,(x). They can readily be obtained by manipulating 
recursion relations found in standard books (Abramowitz and Stegun 1970). 

Hermite: 

d 
-(a + p  +2n)( l  -y2) - P:y’ 

2np‘R.8’ - -[(a - p )  + (a + p  +2)y]Pjp!y+” - (1 -y2) - PL-, 

dY 

Q+1,@+1) 

dY 
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